Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The yellow clam Mesodesma mactroides is a cool-water species that typifies sandy beaches of the Southwestern Atlantic Ocean (SAO), which embraces one of the strongest ocean warming hotspots. The region is influenced by the Rio de la Plata (RdlP), which represents a zoogeographic barrier that restricts its larval exchange. We investigated yellow clam larval connectivity patterns using an individual based model (IBM). The IBM combined outputs from a 3D hydrodynamic model with a clam submodel that considered salinity- and temperature dependent mortality for the planktonic larvae. Connectivity across the RdlP estuary occurred only for larvae released in spring during a strong La Ni˜na event. Mortality due to freshwater precluded larval transport across the RdlP, whereas larval mortality induced by warmer waters reduced connectivity, leading to self-recruitment in most areas. Warming acceleration in this hotspot could further restrict larval connectivity between populations in the SAO, with conservation implications for this threatened species.more » « less
-
Abstract A high‐resolution ocean model is used to characterize the circulation and cross‐shelf exchanges in the Brazilian/Uruguayan portion of the southwestern Atlantic shelf. Cross‐shelf exchanges are strongly modulated by the bottom topography. There is ∼1.2 Sv of on‐shelf transport between 21°S and 25.2°S, and ∼1.6 Sv of off‐shelf transport between 35°S and 25.2°S. North of 25.2°S, the cross‐shelf exchanges show a two‐layer structure with an off‐shelf flow in the upper 50m and on‐shelf flow deep below. A Lagrangian diagnostic shows that ∼0.15 Sv of deep waters from the Brazil Current (z > 200 m) are injected into the shelf. Mixing with ambient waters produces a spicier (warmer and saltier) water mass, which is ejected into the open ocean in the southern region. Backward in‐time particle's trajectories analysis reveals that 95% of the southward shelf transport at 32°S originates in the open ocean at 22°S. Our model diagnostics show that there is a very limited connectivity between the shelf regions north and south of Cabo Frio. Correlation analysis shows no significant influence of El Niño Southern Oscillation (ENSO) and Southern Annular Mode (SAM) on the time variability of the cross‐shelf transport. Cross‐shelf transports, however, are significantly correlated with the local wind stress variability.more » « less
An official website of the United States government
